








Figure 8: Vertical (z) position versus horizontal path length (left)
and x-y trajectory (right). Note that GPS and IMU positions have
been determined independently from each other.

20 m/s is observed for GPS and IMU velocities. The
point, where the main avalanche stops is accompa-
nied by a decrease in particle GPS velocities and
the single particle motion is mainly below 5 m/s.

Figure 9: Velocities obtained by means of Doppler radar, GPS,
and IMU measurements together with the terrain profile obtained
from the terrestrial laser scan.

7. CONCLUSION

In situ measurements of a real scale avalanche tra-
jectory utilizing an inertial navigation technique have
been presented. In spite of several shortcomings
coming along with the lack of any preceding expe-
riences with the measurement set-up, it has been
proven that the method is valid for the acquisition of
qualitative and quantitative avalanche motion data.
These are, in particular, the Lagrangian velocity and
the trajectory of a single particle transported by the
avalanche. The absolute positioning error is roughly
estimated ∼1 m over a travel distance of about 65 m
and is rapidly growing afterwards. Within this range
of reliability, the positioning error of the inertial na-
vigation approach is definitely lower than the one of
the GPS track (x, y) in combination with laser scan-
ning data (z), (cf. Figure 8). It is emphasized that the
accuracy of the evaluated trajectory is sufficiently
high, such that a vertical motion relatively to the
slope line can be detected. This can be seen from
the pronounced saltation, which occurs as a result
of the strong initial acceleration. Based on these

first results, the authors are confident that the met-
hod can be developed further to provide an impro-
ved insight into the internal avalanche dynamics (se-
gregation processes, e.g.). It is estimated that with a
new generation of industrial grade (i.e. low cost) IMU
sensors and with some improvements of the time in-
tegration procedure, a stable evaluation of velocity
and position data is possible over a time period of
at least 10 s and that a resolution on a sub-meter
scale can be achieved, such that a vertical motion
relatively to the terrain can be detected reliably. The
capability of the inertial navigation approach could
be raised strongly in combination with an additional,
long-term stable positioning system such as terres-
trial radio navigation (Erlacher et al., 2016, 2018).
Finally, it is emphasized that future work on the to-
pic must address the influence of size and shape of
the sensor housing on the transport process.

REFERENCES

Bartelt, P. and McArdell, B. (2009). Instruments and Methods:
Granulometric investigations of snow avalanches. Journal of
Glaciology, 55(193):829–833.

CAA, C. A. A. (2016). Observation guidelines and recording stan-
dards for weather snowpack and avalanches. Technical re-
port, Canadian Avalanche Association, Revelstoke, BC, Ca-
nada.

Erlacher, F., Dressler, F., and Fischer, J. (2018). First Experi-
mental Insights on a Novel Sensor Network based Measure-
ment Platform for Avalanche Dynamics. In International Snow
Science Workshop, Innsbruck, Austria - 2018.

Erlacher, F., Weber, B., Fischer, J.-T., and Dressler, F. (2016).
AvaRange - Using Sensor Network Ranging Techniques to
Explore the Dynamics of Avalanches. In 12th IEEE/IFIP Con-
ference on Wireless On demand Network Systems and Servi-
ces (WONS 2016), pages 120–123, Cortina d’Ampezzo, Italy.
IEEE.
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