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(a) week period: force vs. air temperature

(c) week period: force vs. snow height
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(b) 2 day period: force vs. air temperature

(d) 2 day period: force vs. snow height

Figure 3: Diurnal variations of forces, air temperature and snow height

in March 2012. This period supposed to be the
time of the highest loads and therefore an under-
estimation of the maximal force in 2011/12 in the
structure is likely. The calculation according to the
guidelines (load case 2) provides a force of 243 kN
as dimensioning value, which seems to underesti-
mate the measured values. A calculation accord-
ing to load case 1 however reveals a dimensioning
value of 360 kN, which is in better agreement to the
measured forces. Measurements of axial forces in
the middle strut indicate a maximal value of 169 kN
which is almost equivalent to the calculated value
according to load case 2.

3. DIURNAL VARIATIONS

Beside seasonal variations throughout the winter
period, the measured forces also indicate a diurnal
variation. While resulting stresses in the structure
increase during the night, they decrease during the
day although the snow height remains almost con-
stant. This variations typically occur with the start
of the melting period in spring, leading to the as-
sumption that melting and freezing processes in the
snowpack result in different loadings of the mitiga-
tion structure. Figure 3 (a) depicts the period of a
week in March 2012 highlighting the axial forces in
the edge strut of the snow net system. Figure 3 (b)
shows a 2-day interval in detail. Comparing forces
in the strut and the air temperature obtained from
the nearby weather station at the Hafelekar (2.270
m a.s.l.), an analogy between both courses is obvi-
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ous. The forces show a daily peak just where air
temperature is minimal. This effect is notable in
spring where air temperatures are around the freez-
ing point. Figure 3 (c) and (d) indicate that this
fluctuations are independent from the related snow
height. An explanation for this fluctuations might be,
that cohesion, sintering and feezing as bonding pro-
cesses in the snowpack lead to a larger snow vol-
ume acting as load on the mitigation measure. Melt-
ing processes lead to a loss of junctions between
snow grains and therefore the load of the snow pack
to the structure decreases. The magnitude of this
effect is about 30kN of the axial force in the strut,
which is approximately 10 % of the overall force in
the strut.

4. CONCLUSIONS

The presented work shows the time evolution of
forces in the struts of an instrumented snow net
system on the “Hafelekar” test site near Innsbruck.
Measurements of two surpassing winter periods
highlight maximal forces in the struts. Comparing
these forces with theoretical characteristic forces
from guidelines a good accordance regarding the
middle strut of the system has been observed. The
measurements in the edge strut indicate higher
forces compared to the force obtained from guide-
lines. However, calculating the forces in the edge
strut according to an adverse load case (load case
1 in the swiss guidelines) leads to a good agreement
with the measured force.
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Furthermore the continuous measurements indi-
cate a diurnal variation of the forces in the struts of
the snow net. Therefore snow heights and air tem-
peratures of the elected time periods were analysed
and compared to the force measurements. The ob-
served effect is independent from snow height but
shows a strong correlation to the air temperature,
particularly in spring. We assume this effect occurs
due to melting and freezing processes in the snow-
cover.
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